Current Issue : October-December Volume : 2024 Issue Number : 4 Articles : 5 Articles
This paper presents a low-profile reconfigurable antenna array capable of five radiationpattern modes for vehicular communication applications. The antenna array consists of four antenna elements, each containing four square patches. Exciting one of the square patches generates a broadside radiation. A square parasitic patch is added at the rear of the excited patch, and two square parasitic patches are placed at the front. By optimizing the design of these parasitic patches, including the treatment of center slotting and addition of shorting pins, the antenna element achieves an end-fire beam with a certain tilt angle. On this basis, a reconfigurable feeding network is designed with 1:1 and 1:4 output modes. By connecting the reconfigurable feeding network to the four antenna elements and altering the on/off states of the PIN diodes in the feeding network, a reconfigurable antenna with four end-fire beams and one omnidirectional beam in its radiation pattern is realized. Measurement results demonstrate an excellent impedance bandwidth, radiation pattern, and gain performance in all modes. The four end-fire and one omnidirectional radiation characteristics make it highly suitable for vehicular communication applications....
Reconfigurable Intelligent Surfaces have recentlyemerged as a revolutionary next-generation wireless networks paradigm that harnesses engineered electromagnetic environments to reshape radio wave propagation. Pioneering research presented in this article establishes the viability of Reconfigurable Intelligent Surfaces-enhanced indoor localisation and charts a roadmap for its integration into nextgeneration wireless network architectures. Here, we present a comprehensive experimental analysis of a Reconfigurable Intelligent Surfaces-enabled indoor localisation scheme that evaluates the localisation accuracy of different machine learning algorithms under varying Reconfigurable Intelligent Surfaces states, antenna types, and communication setups. The results indicate that incorporating Reconfigurable Intelligent Surfaces can significantly enhance indoor localisation accuracy, achieving an impressive 82.4% success rate. Moreover, this study delves into system performance across varied communication modes and subcarrier configurations. This research is poised to lay the groundwork for implementing Reconfigurable Intelligent Surfaces-empowered joint sensing and communications in future next-generation wireless networks....
In this paper, a 3-bit circularly polarized reconfigurable reflectarray is proposed. The array consists of 64 units in an 8 × 8 configuration, with each unit containing a circular metal patch loaded with phase-delay lines and eight PIN diodes. To independently control each unit, a corresponding DC control circuit was designed and tested with the array. In the bandwidth of 3.43–3.71 GHz, the circularly polarized reconfigurable reflectarray achieved a gain of 16 dB, an aperture efficiency of 27%, an axial ratio of ≤3 dB, an operating bandwidth of 8%, and a beam scanning range of ±60◦. The circularly polarized reconfigurable reflectarray can also achieve a good dual-beam radiation performance after testing. The 3-bit circularly polarized reconfigurable reflectarray proposed in this paper offers several advantages, including low loss, high aperture efficiency, a wide beam scanning range, and excellent stability in wide-angle oblique incidence. It has potential applications in low-cost phased array, satellite communications, and deep space exploration....
The deployment of wireless communication networks in the E band (60–90 GHz) requires highly flexible, real-time, and precise tunability to optimize power transmission amidst diffraction, obstacles, and scattering challenges. This paper proposes an innovative reconfigurable metasurface reflect array design capable of achieving a dynamic phase range of 312 degrees with less than 1 dB of loss. The design integrates two types of unit cells and employs piezoelectric crystal as the tuning element. Simulation results illustrate the feasibility of beam focusing and accurate beam steering within a range of ±3 degrees. Furthermore, the proposed reconfigurable metasurface reflector demonstrates an antenna gain comparable to that of a dish antenna with the same aperture size....
Quantum photonic integrated circuits, composed of linear-optical elements, offer an efficient way for encoding and processing quantum information on-chip. At their core, these circuits rely on reconfigurable phase shifters, typically constructed from classical components such as thermo- or electro-optical materials, while quantum solidstate emitters such as quantum dots are limited to acting as single-photon sources. Here, we demonstrate the potential of quantum dots as reconfigurable phase shifters. We use numerical models based on established literature parameters to show that circuits utilizing these emitters enable high-fidelity operation and are scalable. Despite the inherent imperfections associated with quantum dots, such as imperfect coupling, dephasing, or spectral diffusion, we show that circuits based on these emitters may be optimized such that these do not significantly impact the unitary infidelity. Specifically, they do not increase the infidelity by more than 0.001 in circuits with up to 10 modes, compared to those affected only by standard nanophotonic losses and routing errors. For example, we achieve fidelities of 0.9998 in quantum-dot-based circuits enacting controlledphase and – not gates without any redundancies. These findings demonstrate the feasibility of quantum emitter-driven quantum information processing and pave the way for cryogenically-compatible, fast, and low-loss reconfigurable quantum photonic circuits....
Loading....